Latency Optimization for Resource Allocation in Mobile-Edge Computation Offloading
نویسندگان
چکیده
By offloading intensive computation tasks to the edge cloud located at the cellular base stations, mobile-edge computation offloading (MECO) has been regarded as a promising means to accomplish the ambitious millisecond-scale end-to-end latency requirement of the fifth-generation networks. In this paper, we investigate the latency-minimization problem in a multi-user time-division multiple access MECO system with joint communication and computation resource allocation. Three different computation models are studied, i.e., local compression, edge cloud compression, and partial compression offloading. First, closed-form expressions of optimal resource allocation and minimum system delay for both local and edge cloud compression models are derived. Then, for the partial compression offloading model, we formulate a piecewise optimization problem and prove that the optimal data segmentation strategy has a piecewise structure. Based on this result, an optimal joint communication and computation resource allocation algorithm is developed. To gain more insights, we also analyze a specific scenario where communication resource is adequate while computation resource is limited. In this special case, the closed-form solution of the piecewise optimization problem can be derived. Our proposed algorithms are finally verified by numerical results, which show that the novel partial compression offloading model can significantly reduce the end-to-end latency.
منابع مشابه
Decentralized Computation Offloading and Resource Allocation in Heterogeneous Networks with Mobile Edge Computing
We consider a heterogeneous network with mobile edge computing, where a user can offload its computation to one among multiple servers. In particular, we minimize the system-wide computation overhead by jointly optimizing the individual computation decisions, transmit power of the users, and computation resource at the servers. The crux of the problem lies in the combinatorial nature of multi-u...
متن کاملJoint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks
Mobile-Edge Computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this article, a MEC enabled multi-cell wireless network is considered where each Base Station (BS) is equipped with a MEC server that can assist mobil...
متن کاملEnergy-Efficient Joint Offloading and Wireless Resource Allocation Strategy in Multi-MEC Server Systems
Mobile edge computing (MEC) is an emerging paradigm that mobile devices can offload the computationintensive or latency-critical tasks to the nearby MEC servers, so as to save energy and extend battery life. Unlike the cloud server, MEC server is a small-scale data center deployed at a wireless access point, thus it is highly sensitive to both radio and computing resource. In this paper, we con...
متن کاملEfficient Radio Resource Management for Wireless Cellular Networks with Mobile Edge Computing
Mobile edge computing (MEC) has attracted great interests as a promising approach to augment computational capabilities of mobile devices. An important issue in the MEC paradigm is computation offloading. In this paper, we propose an integrated framework for computation offloading and interference management in wireless cellular networks with mobile edge computing. In this integrated framework,...
متن کاملJoint Service Caching and Task Offloading for Mobile Edge Computing in Dense Networks
Mobile Edge Computing (MEC) pushes computing functionalities away from the centralized cloud to the network edge, thereby meeting the latency requirements of many emerging mobile applications and saving backhaul network bandwidth. Although many existing works have studied computation offloading policies, service caching is an equally, if not more important, design topic of MEC, yet receives muc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1704.00163 شماره
صفحات -
تاریخ انتشار 2017